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Abstract. We have generated series expansions for the layer susceptibility ,y, of the king 
model with a free surface, on both the square and simple cubic lattices. In both cases we 
have extended known series expansions by four terms. Analysis of these series yields 
71 = 1,37*0.01 (square) and = 0.78zt0.02 (simple cubic). These results are consistent 
with both surface scaling and with the recent RG scaling result obtained by A J Bray and 
M A Moore. 

1. Introduction 

The behaviour of magnetic systems with a free surface has been the subject of several 
recent studies. The position up to 1976 is discussed by Binder and Landau (1976), but 
since that time there have been several relevant RG calculations (Lubensky and Rubin 
1975, Svraki6 and Wortis 1977, Burkhardt and Eisenriegler 1977, Bray and Moore 
1977) and a series analysis study of the self-avoiding walk problem (Barber et a1 1978). 
As pointed out by Binder and Landau (1976), this problem is of interest, not only 
because of its theoretical significance, but also for its applicability to catalysis 
phenomena. This is particularly relevant to the current problem as the magnetic 
properties of catalyst surfaces are believed to be related to their catalytic properties. 

The model we have studied is described by the Hamiltonian 

This is the usual Ising spin Hamiltonian with the addition of a surface magnetic field H!, 
which is parallel to the bulk magnetic field Hl but acts only on the surface spins, as 
implied by the prime on the summation. 

The surface magnetic field allows the definition of two additional susceptibilities; 
the layer susceptibility x1 given by -a2G/aH aH1, where G is the Gibbs free energy, 
and the local susceptibility xll given by -a2G/aH:, in addition to the bulk susceptibility 
x = -a2G/aH2. For these two additional susceptibilities we define corresponding 
exponents -y, and nl respectively, i.e. ,yl - (T  - TJY1 and ,ylI - (T  - TJYL1 as T --* Tf. We 
also assert that the critical temperature for these additional susceptibilities is the same 
as for the bulk system. In two dimensions this follows from the exact result of McCoy 
and Wu (1975), which establishes that x and xII have the same critical temperature. 
Given the nature of the graphical expansion of the different susceptibilities (as 
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discussed in the next section), we can bound the series coefficients in the high- 
temperature expansion of x1 both above and below by those of x and xu, from which 
follows the identity of their radii of convergence, and hence their critical temperatures. 
In three dimensions we have no explicit proof, but such a result is most unlikely to be 
dimension-dependent, and has in any event been proved for the d = 3, I I  = 0 case 
(Whittington 1975) so that we feel confident in assuming it here. 

The above critical exponents are not independent, but are expected to be related 
through the surface scaling relation (Barber 1973) 2yl -- yll = y + v. One of our aims is t o  
test the validity of this relation, which we found to be satisfied for the n = 0 problem 
(Barber et af 1978). Another aim is to test the less-well founded RG scaling relation of 
Bray and Moore (1977): yI1 = v - 1. This important relation was found not to be 
satisfied for the two-dimensional n = 0  model, and was only just within fairly wide 
confidence limits for the three-dimensional 11 = 0 model (Barber eta1 1978). However, 
for the two-dimensional Ising model it is clearly satisfied as yll = 0 and Y = 1 (McCoy and 
Wu 1973). For the Ising model in three dimensions it is therefore of considerable 
interest to test its validity. 

We have therefore generated series expansions for x1 on both the square and simple 
cubic lattices, obtaining 14 and 12 coefficients respectively on the two lattices. In an  
earlier study, Binder and Hohenberg (1972, 1974) obtained 10 and 8 coefficients for 
this quantity on the same lattices. Binder and Hohenberg also studied a wide range of 
transitions obtainable by varying the ratio of the coupling constant in the surface to that 
in the bulk. We have not considered that aspect here. 

In the next section we shall describe the derivation of the series. In Q 3 we present an 
analysis of the series. The final section comprises a discussion of our results. 

2. Derivation of the series 

For the bulk king model, a variety of methods for deriving series expansions of the 
susceptibility exists. The earliest of these methods, and the most obvious, is due to 
Oguchi (1949). In that method one requires all graphs with two odd vertices embed- 
dable in the underlying lattice, with the constraint that multiple occupancy of a bond is 
forbidden. The disadvantage of the method is that a large number of graphs is required, 
including multicomponent graphs. Several methods exist which reduce the number of 
graphs; one of these methods requires only connected graphs, while the star graph 
method requires,only connected graphs with no cut points (see Domb 1974 for a 
review). Unfortunately the implementation of those methods which make use only of 
connected graphs depends on the translation invariance of the lattice, a feature which is 
manifestly absent in the present problem. While these methods could presumably be 
appropriately modified to handle this feature, we decided to use the original (Oguchi 
1949) method, which is directly applicable. Furthermore, a list of the required 
topologies was already available (Guttmann and Nymeyer 1977) for all graphs up to 12 
lines on the square and simple cubic lattices. 

In accordance with previous studies (Binder and Hohenberg 1972,1974) we chose 
the square and simple cubic lattices. It may also be argued that these lattices are the 
most natural choice if one requires a rectilinear boundary. 

The graphs required for the layer susceptibility xI are all graphs with two odd 
vertices, with the constraints that at least one odd vertex lies in the surface and no 
vertices lie below the surface. The subset of these graphs, comprising the set of graphs 
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with both odd vertices in the surface, is required to generate the series expansion for the 
local susceptibility xIl. We deliberately chose not to extend this series for several 
reasons. Firstly, for the square lattice the corresponding exponent y~~ is known exactly 
(McCoy and Wu 1973), so there is little purpose in studying this quantity by series 
analysis. Secondly, our graph counting programs do not automatically produce the 
required breakdown into layer and local susceptibility graphs, though this objection 
could be overcome. The third and most compelling reason is that we consider that the 
extension of this series for the simple cubic lattice would avail us very little. The 
expected critical exponent is small and negative. Such exponents are notoriously 
difficult to analyse (Gaunt and Guttmann 1974). Our experience with the self-avoiding 
walk analogue of this problem (Barber era1 1978) leads us to believe that a series longer 
than that which we could derive here would be needed to give a reliable estimate of nl. 
For the self-avoiding walk problem our series for ,yll was 23 terms long for the square 
lattice and 14 terms long for the simple cubic lattice. For the Ising problem our series 
are 14 and 12 terms long respectively for the two lattices. 

We therefore required graphs with up to four components. (A four-component 
graph first becomes embeddable on these lattices at 13 lines, while five-component 
graphs do not occur before 17 lines.) The one-component graphs were counted using a 
modified version of the counting program written by J L Martin and C J Elliott. New 
programs were written to count the two-component graphs. The symbolic counting 
methods developed by M F Sykes (1979 private communication) were used to express 
the three- and four-component graphs in terms of two-component graphs, which could 
then be counted by machine. 

Most disconnected graphs were also checked by hand calculations. All calculations 
and the tabulation and consolidation of individual results were performed indepen- 
dently by at least two of us, and usually by all three of us. We therefore have a high 
degree of confidence in the accuracy of our series coefficients. 

The layer susceptibility series has thus been extended by four terms on both the 
square and simple cubic lattices. Since these coefficients grow exponentially, such an 
extension is substantial. We list the coefficients in table 1 below. The first 8 coefficients 

Table 1. Coefficients of the layer susceptibility XI  for the square and simple cubic lattices. 

n XI (square) x, (simple cubic) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

1 
3 
7 

19 
49 

127 
321 
813 

2041 
5117 

12763 
31791 
78917 

195677 
484019 

1 
5 

21 
93 

409 
1837 
8209 

36969 
166041 
748889 

3373941 
15248153 
68840633 
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for the simple cubic lattice and the first 10 coefficients for the square lattice were 
previously obtained by Binder and Hohenberg (1972,1974) and we are happy to report 
complete agreement with their coefficients as published in 1974. 

3. Analysis of series 

As discussed in 9: 1 the critical point for the layer susceptibility x1 is expected to be the 
same as for the bulk. Utilising this fact, our analysis methods are all bitsed by specifying 
the critical temperature. This is exactly known ford = 2 (Vi ’  = 1 + J2), while for d = 3 
the series estimate Vi’  = 4.5844 (Sykes et a1 1972) is expected to be uncertain only in 
the last digit. 

We have analysed the series for the exponent y using standard ratio techniques 
modified to take into account the oscillations in the ratio plots characteristic of a 
loose-packed lattice (Gaunt and Guttmann 1974). If the ratio of alternate coefficients 
a,,/a,,-* is denoted r,,, then estimates of the exponent are given by the sequence 
y /” (n )  = i n (  V?r, - I )+  1. Linear extrapolants of alternate terms, given by 

y j l ) ( n )  =+[nyi”(n)-(n -2)yfo)(n -2)I 

take account both of a period two oscillation in the ratio plots, and of a correction term 
O ( n - 2 )  in the ratios. Higher-order extrapolants may also be defined if the regularity of 
the series warrants such a refinement. 

For the square and simple cubic lattices, we show these extrapolations in table 2. For 
the square lattice, the exponent estimates slowly increase and suggest a value y 1 3  
1.366, while the linear extrapolants are slightly higher, though more erratic, and 
suggest a value y, - 1.372. Taking this as our central value, we estimate a confidence 
limit that takes into account the last five entries in the table as well as discernible trends, 
and we thus give as our final estimate yI = 1.372i0 .01 .  

For the simple cubic lattice the exponent estimates are decreasing quite rapidly, 
giving yl < 0.825, while the last five entries of the linear extrapolants are quite stable 

Table 2. Ratios and extrapolants to estimate the layer susceptibility exponent n for the 
square and simple cubic lattices. 

Square lattice Simple cubic lattice 

( 0 )  ( I )  (0) (1) 
n an/an-2  Y,, Y n  a,la,-z Y , ~  Y“ 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
- 

6.333333 
7,000000 
6.684211 
6.55 1020 
6,401575 
6,358255 
6,293973 
6.253307 
6.212820 
6.183264 
6.155 107 
6.133267 

1.1300 
1,4020 
1,3671 
1.3720 
1.3442 
1,3637 
1,3595 
1,3646 
1,3628 
1,3654 
1.3644 
1,3662 

- 
1,7228 
1,3118 
1,2870 
1.3388 
1.4129 
1.3681 
1,3777 
1.3694 
1,3732 
1.3713 

18,600000 
19,476190 
19.752688 
20.070905 
20.124660 
20,226702 
20,257216 
20,319927 
20.361032 
20,403627 

0,8275 
0.8534 
0,8496 
0,8650 
0,8514 
0.8496 
0,8374 
0,8342 
0,8284 
0,8250 

_- 
0.8828 
0.8882 
0,8560 
0.8036 
0.7882 
0.7726 
0.7880 
0.7787 
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and suggest a value around 0.78. Estimating the confidence limits in a similar manner 
to that employed for the square lattice leads to the final estimate n = 0.78 f 0.02. 
Varying the critical point estimates by one part in lo4 did not change these estimates at 
all. 

Other methods of analysis have also been employed. In order to remove the 
oscillation of the ratio plots, we transformed the series using the Euler transformation 

x = 2 v/ (1 + v/ V,). 
This transformation leaves the origin and the point V = V, invariant, while moving the 
point V = - V, to infinity in the X plane. The transformed series were then analysed by 
standard ratio techniques, including Neville table extrapolations. The results, though 
not shown here, are entirely consistent with those quoted above. 

4. Discussion 

In Barber et aI (1978) we studied the corresponding susceptibilities for the self-avoiding 
walk problem, and found that the surface scaling relation (Barber 1973) 2% - nl = y + v 
was satisfied, while the RG scaling relation (Bray and Moore 1977) yl = v - 1 was not 
satisfied for the two-dimensional system. 

For the king problem, it is known that the RG scaling relation nl = v - 1 is satisfied 
for the two-dimensional system, since the exact results nl = 0, v = 1 are known (McCoy 
and Wu 1973). Combining these results with the exact result y = f gives the surface 
scaling prediction y,= 1-375. Our series result y~ = 1.372*0*01 is in excellent 
agreement with this, and so provides additional support, if any were needed, for the 
validity of surface scaling for this system. 

For the three-dimensional system there are of course no relevant exact results. The 
best series estimates for the bulk quantities are y = 1.250*0.003 and v = 0.638-0.001 
(Ferer and Wortis 1972). Surface scaling therefore gives 2~ - nl = 1.888-0.004, while 
the RG scaling relation gives nl = -0.362-0.002. As discussed in 0 2, we have not 
attempted to obtain series estimates of nl, and so we cannot test surface scaling directly. 
However, since surface scaling appears to hold for the self-avoiding walk problem in 
both two and three dimensions, as well as the king model in two dimensions and for all 
other systems for which it has been tested, it seems reasonable to assume its validity for 
the three-dimensional Ising model. Accepting this, our series estimate = 0.78 f 0.02, 
when combined with surface scaling, gives nl = -0.33 rt0-04. The confidence limits are 
sufficiently wide to include readily the RG scaling result, and so our result is entirely 
consistent with the RG scaling result of Bray and Moore (1977), though not perhaps with 
a level of precision that would be conclusive. This is in contrast to the earlier result of 
Binder and Hohenberg (1972) who obtained 71-0-88, which when combined with 
surface scaling gave yn = -0.13. However, this result is clearly a consequence of the 
extrapolation of a series that is too short, a fact that was recognised by Binder and 
Hohenberg at the time. Indeed the ratio plots for the n series for the simple cubic lattice 
exhibit considerable curvature, and the additional four terms we obtained were vital in 
determining the exponent. A careful study of our results suggest that an additional six 
series coefficients would be required to obtain a level of precision in the estimate of y, 
that would be conclusive. That is not a practical procedure employing the methods used 
here, but may be possible using an appropriately modified version of the star graph 
method. 

+0.002 

+0.005 

+0.001 
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An alternative procedure that tests the combination of surface scaling with RG 

scaling has also been employed. Combining the surface scaling relation 27, - nl = y + v 
with the RG scaling result n1 = Y - 1 gives 2yl - 2 v  - y + 1 = 0. The surface susceptibility 
coefficients 

a,, - A p  "n "-', 
while the series coefficients of the second spherical moment (Moore et a1 1969) 

. It follows therefore that the sequence { e n } ,  whose elements are 
defined by e, = n 'a:/b,p ", behaves asymptotically as n ', where 4 = 2yl - 2v - y + 1.  
This result holds irrespective of the value of the individual exponents n, v and y. If the 
combination of surface scaling and RG scaling is correct, the exponent 4 should be zero. 
For the simple cubic lattice we have estimated 4 by forming the sequences {4Lo'} and 
{4!,')}, defined by 

4'"' =&n4Lo'- (n  -2)4!,0L2]. (4.1) 

These sequences are shown in table 3. It can be seen that the sequence {4!,"} is 
decreasing rapidly, while the linear extrapolants {4k1'} are sporadically oscillating 
around a value of zero. The estimate 141 < 0.03 contains four of the last five estimates, 
and provides additional support for our earlier conclusions with a similar level of 
precision. 

b, - B p n n - Y - 2 p - 1  

(0) - 1 4 ,  - 2n(en/en-2-  1); 

Table 3. Direct test of surface scaling and RG scaling for the simple cubic lattice. 

5 
6 
7 
8 
9 

10 
11  
12 

1.631139 
1,708034 
1.787323 
1,837954 
1.889529 
1.924837 
1.962558 
1.987900 

0,8752 
0,8192 
0.6703 
0,6085 
0.5147 
0,4727 
0,4251 
0,3931 

-0.1850 
0.1440 
0.1579 

-0,0235 
-0.0300 
-0.0705 

0.0224 
-0.0047 
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